Bi- and Tricyclic Penta- and Hexacoordinated Phosphoranes with Varying Ring Sizes: Synthesis, Structures, and Reactivity

Musa A. Said,[†] Melanie Pülm,[‡] R. Herbst-Irmer,^{*,‡} and K. C. Kumara Swamy^{*,†}

Contribution from the School of Chemistry, University of Hyderabad, Hyderabad-500046, A. P., India, and the Institut für Anorganische Chemie der Universität Göttingen, Tammannstr.4, D-37077 Göttingen, Germany

Received February 20, 1996[⊗]

Abstract: New tricyclic hexacoordinated phosphoranes 1-6 with internal N \rightarrow P coordination containing ring sizes varying from five to eight membered have been synthesized by oxidative addition of a quinone or a diol to a cyclic phosphite. The bicyclic phosphorane (NC₉H₆O)P(O₂(3,5-t-Bu)₂C₆H₂)((O-2,4-(t-Bu)₂C₆H₂)₂CH₂)·¹/₂H₂O (7·¹/₂H₂O) has been synthesized by adding the 3,5-di-tert-butyl-*o*-benzoquinone to the cyclic phosphite. The compound (NC₉H₆O)P(2,2'-OC₆H₄C₆H₄O)₂ (6) results from a novel ring exchange reaction of a *phosphorinane* by a *phosphepin* in two ways: (a) by treating (OCH₂CMe₂CH₂O)P((OC₉H₆N) with 2,2'-biphenol/*N*-chlorodiisopropylamine and (b) by treating (Et₂N)P(OCH₂CMe₂CH₂O)(2,2'-OC₆H₄C₆H₄O) with 8-hydroxyquinoline. Treatment of the aminophosphorane (Et₂N)P(OCH₂CMe₂CH₂O)(Q₂C₁₄H₈) with 2,4,6-trimethylbenzoic acid led to the unique ester (OCH₂CMe₂-CH₂O)P(O){OC₁₄H₈O(C(O)-2,4,6-Me₃C₆H₂)} (10). ³¹P NMR data for the new compounds are discussed with respect to the differing ring sizes and coordination number on phosphorus. X-ray analysis shows hexacoordination in 2, 4, and 6 with an N \rightarrow P bond and pentacoordination in 7 without an N \rightarrow P bond. The eight-membered ring in 7 spans a diequatorial position in a trigonal bipyramidal arrangement.

Introduction

In addition to a sizeable number of oxyphosphoranes with six and higher membered rings,¹ several neutral hexacoordinated phosphoranes with an $S \rightarrow P$ coordination have been structurally characterized by Holmes and co-workers recently.² In these compounds, a sulfur atom in a formal eight-membered phosphocin ring internally forms a donor-acceptor $S \rightarrow P$ bond leading to two fused five-membered rings with hexacoordination on the phosphorus (I). Several cyclic anionic, neutral, and zwitterionic hexacoordinated compounds, primarily with fouror five-membered rings, are also known;³ in this context the

recent X-ray study on the unique hexacoordinated phosphoranes II and III containing (4 + 5 + 5) and (4 + 5 + 7) ring systems by Schmutzler and co-workers is noteworthy.⁴

We have been interested in studying the synthesis, structure, and reactivity of the penta- and hexacoordinated phosphoranes with mainly, six and higher membered rings. Wherever feasible, an extension to arsenic systems has been attempted.^{5–7} In

^{*} Authors to whom correspondence should be addressed. E-mail: KCKSSC@UOHYD.ERNET.IN. FAX: +91-40-258120.

University of Hyderabad.

 [‡] Institut für Anorganische Chemie der Universität Göttingen (X-ray).
 [®] Abstract published in Advance ACS Abstracts, September 1, 1996.

^{(1) (}a) Huang, Y.; Arif, A. M.; Bentrude, W. G. J. Am. Chem. Soc. 1991, 113, 7800. (b) Huang, Y.; Sopchik, A. E.; Arif, A. M.; Bentrude, W. G., J. Am. Chem. Soc. 1993, 115, 6235. (c) Schomburg, D.; Hacklin, H.; Roschenthaler, G. V. Phosphorus Sulfur 1988, 35, 241. (d) Prakasha, T. K.; Day, R. O.; Holmes, R. R. J. Am. Chem. Soc. 1994, 116, 8095. (e) Hans, J.; Day, R. O.; Howe, L.; Holmes, R. R. Inorg. Chem. 1992, 31, 1279. (f) Burton, S. D.; Kumara Swamy, K. C.; Holmes, J. M.; Day, R. O.; Houmes, Sc. 1990, 112, 6104. (g) Day, R. O.; Kumara Swamy, K. C.; Fairchild, L.; Holmes, J. M.; Holmes, R. R. J. Am. Chem. Soc. 1991, 113, 1627. (h) Holmes, R. R.; Kumara Swamy, K. C.; Holmes, J. M.; Day, R. O. N., V.; Prakasha, T. K.; Chandrasekaran, A.; Day, R. O.; Holmes, R. R. Inorg. Chem. 195, 34, 4525.

^{(2) (}a) Prakasha, T. K.; Day, R. O.; Holmes, R. R. *Inorg. Chem.* **1992**, *31*, 725, 1913, 3391. (b) Prakasha, T. K.; Day, R. O.; Holmes, R. R. J. Am. Chem. Soc. **1993**, *115*, 2690.

^{(3) (}a) Fluck, E.; Heckmann, G. In Phosphorus-31 NMR Spectroscopy in Stereochemical Analysis; Verkade, J. G., Quin, L. D., Eds.; VCH: Deerfield Beach, Florida, 1987; Chapter 2. (b) Criegern, T. V.; Schmidpeter, A. Phosphorus Sulfur 1979, 7, 305. (c) Cong, C. B.; Gence, G.; Garriques, B.; Koenig, M.; Munoz, A. Tetrahedron 1979, 35, 1825. (d) Koenig, M.; Khatib, F. E.; Munoz, A.; Wolf, R. Tetrahedron Lett. 1982, 23, 421. (e) Shevchenko, I. V. Tetrahedron Lett. 1995, 36, 2021. (f) John, K. P.; Schmutzler, R.; Sheldrick, W. S. J. Chem. Soc., Dalton Trans. 1974, 1841. (g) John, K. P.; Schmutzler, R.; Sheldrick, W. S. J. Chem. Soc., Dalton Trans. 1974, 2466.

⁽⁴⁾ Shevchenko, I. V.; Fischer, A.; Jones, P. G.; Schmutzler, R. Chem. Ber. 1992, 125, 1325.

⁽⁵⁾ Said, M. A.; Kumara Swamy, K. C.; Chandra Mohan, K.; Venkata Lakshmi, N. *Tetrahedron* **1994**, *50*, 6989.

⁽⁶⁾ Said, M. A.; Kumara Swamy, K. C.; Veith, M.; Huch, V. J. Chem. Soc., Perkin Trans. 1 1995, 2945.

⁽⁷⁾ Said, M. A.; Kumara Swamy, K. C.; Veith, M.; Huch, V., submitted for publication.

addition to new reaction chemistry, these systems are expected to throw light on the conformational preferences for different ring sizes and, where the 1,3,2-dioxaphosphorinane ring is involved, the nature of the transition state in the action of cyclic AMP.⁸

For the present study, we have chosen two systems. The first one involves a series of hexacoordinated compounds with ring sizes ranging from five to eight. We have selected oxinate as one of the substituents on phosphorus, as its nitrogen can provide the sixth coordination site by means of a donor– acceptor bond^{3c,f,g} (as in **IV** or **IVa**) to form a chelate five-

membered ring. This study was prompted by our earlier results obtained in analogous arsenic systems wherein the novel tetraand hexacoordinated arsenanes V and VI respectively, with

N \rightarrow As bonds could be structurally characterized.⁷ The use of rings of varying sizes at positions a-d in IV makes such a system attractive to study the possibility of isomers besides providing a larger variety of ring systems than the fused S \rightarrow P systems mentioned above.

The second system involves the use of an amino functionality on a pentacoordinated phosphorus to achieve hexacoordination (eq 1).

Herein we report the synthesis and characterization of compounds 1–7. X-ray structures have been determined for 2·-CH₂Cl₂, 4·CH₂Cl₂, 6·¹/₆Et₂O, and 7·¹/₂H₂O. Compounds 2, 4, and 6 represent the first examples of structurally characterized hexacoordinated phosphoranes with nonfused (6 + 5 + 5), (7 + 5 + 5), and (7 + 7 + 5) ring systems. Synthesis of 6 has been achieved by a novel ring exchange reaction. Compound 7 is a new addition to the unique family of phosphoranes containing an eight-membered ring spanning diequatorial site in a trigonal bipyramidal arrangement.^{li}

Also reported here are the synthesis of 8 and 9 and their reactivity toward 8-hydroxyquinoline and carboxylic acids (note that the carboxylate can act as a chelate toward phosphorus, leading to hexacoordination). Compound 8 reacted with 2,4,6-

trimethylbenzoic acid in a rather surprising manner to give the rearranged ester **10**; characterization of this compound is also described here.

Experimental Section

Chemicals were procured from Aldrich, Fluka, or the local manufacturers; they were purified when required. Solvents were purified according to standard procedures.⁹ All reactions, unless stated otherwise, were performed under dry nitrogen atmosphere. ¹H, ¹³C and ³¹P-{¹H} NMR spectra were recorded on Bruker 200 MHz spectrometer in CDCl₃ solutions (unless stated otherwise) with shifts referenced to SiMe₄ ($\delta = 0$) or 85% H₃PO₄ ($\delta = 0$). IR spectra were recorded on a JASCO FT/IR-5300 spectrophotometer. Elemental analyses were carried out on a Perkin-Elmer 240C CHN analyzer.

Compounds $(NC_9H_6O)P(1,2-O_2C_6H_4)$ (11: mp 83 °C; ³¹P NMR 124.9),^{3c} $(NC_9H_6O)P(OCH_2CMe_2CH_2O)$ (12), $(NC_9H_6O)P(2,2'-OC_6H_4C_6H_2O)$ (13), and $(NC_9H_6O)P\{(O-2,4-(t-bu)_2C_6H_2)_2CH_2\}$ (14)

⁽⁹⁾ Perrin, D. D.; Armarego, W. L. F.; Perrin, D. R. Purification of Laboratory Chemicals; Pergamon, Oxford, 1986.

Table 1. Crystal Data of 2, 4, 6, and 7

	2	4	6	7
empirical formula	$C_{28}H_{24}NO_5P \cdot CH_2Cl_2$	$C_{35}H_{34}NO_5P \cdot CH_2Cl_2$	$C_{33}H_{22}NO_5P \cdot \frac{1}{6}Et_2O$	$C_{52}H_{68}NO_5P \cdot \frac{1}{2}H_2O$
formula weight	570.38	664.53	555.84	827.05
crystal system	monoclinic	orthorhombic	rhombohedral	triclinic
space group	$P2_1/c$	Pna2 ₁	R3	PĪ
a (Å)	10.582(1)	17.463(5)	36.021(2)	10.988(3)
b (Å)	27.900(3)	12.558(2)	36.021(2)	21.980(5)
<i>c</i> (Å)	9.255(1)	30.426(7)	10.646(2)	22.108(5)
α (deg)	90	90	90	110.05(1)
β (deg)	106.57(1)	90	90	101.77(2)
γ (deg)	90	90	120	92.94(1)
$V(Å^3)$	2619.0(5)	6672(3)	11963(2)	4868(2)
Ζ	4	8	18	4
$D_{\rm x}$ (Mg/m ³)	1.447	1.323	1.389	1.129
$\mu \text{ (mm}^{-1}\text{)}$	0.351	0.286	0.150	0.103
F(000)	1184	2784	5202	1784
cryst size (mm)	0.5 imes 0.8 imes 0.9	$0.3 \times 0.6 \times 0.6$	$0.5 \times 0.5 \times 0.5$	0.6 imes 0.7 imes 0.8
2θ range	8 - 50	4 - 45	7 - 45	7 - 50
reflect. collect.	5991	9105	6273	17857
indep. reflect.	4612	8723	3498	17492
R _{int}	0.0172	0.0301	0.0290	0.3520
data	4612	8711	3498	17477
parameters	365	824	381	1213
restraints	25	1	7	399
S	1.019	1.069	1.030	1.020
$R_1 \left(I > 2\sigma(I) \right)$	0.0420	0.0461	0.0410	0.0732
wR_2 (all data)	0.1011	0.1141	0.0989	0.2256
extinction coeff	0.0020(5)			
Flack x		0.52(8)		
largest diff peak [e Å ⁻³]	0.257	0.351	0.272	0.871
largest diff hole [e Å ⁻³]	-0.271	-0.424	-0.268	-0.448

were synthesized by reacting their respective chloro precursors⁶ with 8-hydroxyquinoline in toluene or diethyl ether in yields of 60-80%. Selected physical data are given below.

12 (purified by distillation at 220 °C/0.5 mm): Mp: 50 °C. ¹H NMR: 0.67 (s, 3H, *CH*₃), 1.20 (s, 3H, *CH*₃), 3.36 (t, 2H, *CH*₂ (A)), 4.40 (dd, 2H, *CH*₂(B)), 7.20–8.90 (m, 6H, *H* (Ar)). ³¹P{¹H} NMR: 113.5. Anal. Calcd for C₁₄H₁₆NO₃P: C, 60.65; H, 5.78; N, 5.05. Found: C, 60.38; H, 5.65; N, 5.00.

13 (crystallized from CH₂Cl₂ + hexane): Mp: 145–148 °C. ¹H NMR: 7.20–9.16 (m, H(Ar)). ³¹P NMR: 139.6. Anal. Calcd for C₂₁H₁₄NO₃P: 70.19; H, 3.90; N, 3.90. Found: C, 70.10; H, 3.85; N, 3.70.

14 (crystallized from Et₂O + hexane): Mp: 85 °C. ¹H NMR: 1.30 (s, 18H, t-Bu-*H*), 1.32 (s, 18H, t-Bu-*H*), 3.58 (d, 1H, ${}^{2}J$ (H–H) = 14.0 Hz, CH_AH_B), 4.49 (dd, J = 4.0 Hz, 14.0 Hz, 1H, CH_AH_B), 7.28–9.05 (m, 10H, *H*(Ar)). ³¹P NMR: 131.2. Anal. Calcd for C₃₈H₄₈NO₃P: C, 76.38, H, 8.04; N, 2.34. Found: C, 76.45; H, 7.96; N, 2.45.

The aminophosphites (Et₂N)P(OCH₂CMe₂CH₂O) (**15**)⁶ and (Et₂N)P-(2,2'-OC₆H₄C₆H₄O) (**16**) [δ (³¹P) = 149.6 ppm] were prepared by reacting their respective chloro precursors⁶ with diethylamine.

Synthesis of compounds 1-7 was accomplished by the oxidative addition of a diol (in the presence of *N*-chlorodiisopropylamine) or a quinone to the phosphite. Only typical procedures are given.

(a) Preparation of the Phosphorane (NC₉H₆O)P(1,2-O₂C₆H₄)(1,2-O₂-3,5(t-Bu)₂C₆H₂) (1). 3,5-Di-*tert*-butylbenzoquinone (0.43 g, 1.95 mmol) was added to 11 (0.55 g, 1.95 mmol) in dry toluene (5 mL). The mixture was heated under reflux for 10 min, solvent was removed *in vacuo*, and the residue crystallized from CH₂Cl₂-*n*-heptane. Yield: 0.6 g (61%). Mp: 198 °C. ¹H NMR: 1.25 (s, 18H, CH₃), 6.75-9.08 (m, 12H, H(Ar)). ³¹P NMR: -88.3 (lit. ³¹P NMR-88^{3c}). Anal. Calcd for C₂₉H₃₀NO₅P: C, 69.18; H, 5.96; N, 2.78. Found: C, 69.05; H, 5.76; N, 2.70. (This compound has been reported earlier^{3c} without melting point data; the carbon analysis was also not correct.)

(b) Preparation of (NC₉H₆O)P(9,10-O₂C₁₄H₈)(OCH₂CMe₂CH₂O) (2). 9,10-Phenanthrenequinone (0.45 g, 2.18 mmol) was added to 12 (0.60 g, 2.18 mmol) in dry *p*-xylene (5 mL) and the mixture heated to reflux for 10 min. Solvent was removed *in vacuo* and the residue crystallized from CH₂Cl₂-hexane (1:5) to obtain 2 as red crystals. Yield: 0.6 g (57%). Mp: 265 °C. ¹H NMR: 1.14 (s, 3H, CH₃), 1.22 (s, 3H, CH₃), 4.09 (d, 4H, ³*J*(P-H) = 17.6 Hz, OCH₂), 5.30 (variable intensity, CH₂Cl₂), 7.15-8.68 (m, 14H, *H*(Ar)). ³¹P NMR: -100.5. Anal. Calcd (after powdering and drying in a vacuum) for $C_{28}H_{24}$ -NO₅P: C, 69.28, H, 4.95; N, 2.89. Found: C, 69.05; H, 4.80; N, 2.65.

This compound hydrolyzed in solution in the presence of moisture to afford 23 (see also i(iii) below).

(c) Preparation of $(NC_9H_6O)P(1,2-O_2-3,5-(t-Bu)_2C_6H_2)(OCH_2-CMe_2CH_2O)$ (3). The procedure was similar to that given for 1 using similar molar quantities. Crystallization was done from CH_2Cl_2-n -heptane. Yield: 50%. Mp: 172 °C. ¹H NMR: 1.05 (s, 3H, *CH*₃), 1.16 (s, 3H, *CH*₃), 1.21 (s, 9H, t-Bu-*H*), 1.46 (s, 9H, t-Bu-*H*), 3.80–4.40 (m, 4H, OCH₂), 6.60–8.60 (m, 8H, *H*(Ar)). ³¹P NMR: -101.0. Anal. Calcd for $C_{28}H_{36}NO_5P$: C, 67.60; H, 7.24; N, 2.82. Found: C, 67.35; H, 7.10; N, 2.58.

(d) Preparation of $(NC_9H_6O)P(1,2-O_2-3,5-(t-Bu)_2C_6H_2)(2,2'-OC_6H_4C_6H_4O)$ (4). The procedure was similar to that for 1 using similar molar quantities. Recrystallization was done using a CH₂Cl₂-hexane (1:5) mixture. Yield: 41%. Mp: 246–248 °C. ¹H NMR: 1.26 (s, 9H, t-Bu-*H*), 1.43 (s, 9H, t-Bu-*H*), 5.30 (s, variable intensity, CH₂Cl₂), 6.48–8.84 (m, 16H, *H*(Ar)). ³¹P NMR: -89.3. Anal. Calcd (after removal of solvent of crystallization) for C₃₅H₃₄NO₅P: C, 72.54; H, 5.87; N, 2.42. Found: C, 72.33; H, 5.56; N, 2.15.

(e) Preparation of $(NC_9H_6O)P(OCH_2CMe_2CH_2O)(2,2'-OC_6H_4-C_6H_4O)$ (5) and $(NC_9H_6O)P[2,2'-OC_6H_4C_6H_4O]_2^{-1}/_6Et_2O$ (6⁻¹/₆Et₂O). To a mixture of 2 (1.87 g, 6.74 mmol) and biphenol (1.26 g, 6.74 mmol) in dry ether (40 mL) maintained at -60 °C was added *N*-chlorodiisoproylamine (0.91 g, 6.74 mmol) in ether (30 mL) over a period of 15 min with continuous stirring. The mixture was brought to 30 °C, stirred overnight, and filtered.

Product **5** was fractionally crystallized from the precipitate (which also contained diisopropylamine hydrochloride) using a CH_2Cl_2-n -heptane mixture. Yield: 1.5 g (48%). Mp: 155 °C. ¹H NMR: 0.97 (br s, 3H, *CH*₃), 1.35 (br s, 3H, *CH*₃), 3.50–4.60 (br m, 4H, *CH*₂), 6.55–8.82 (m, 14H, *H*(Ar)). ³¹P NMR: -107.4. Anal. Calcd for $C_{26}H_{24}NO_5P$: C, 67.68; H, 5.21; N, 3.04. Found: C, 67.89; H, 5.14; N, 2.98.

Compound **6** was isolated by evaporating the solvent from the filtrate and crystallizing the residue from an ether-hexane (1:3) mixture. Yield: 0.12 g (6.6%). The yield of **6** could be significantly improved when a 1:2 molar ratio of **2** to 2,2'-biphenyl was used; thus, by using 1.21 g (4.35 mmol) of **2** and 1.62 g (8.71 mmol) of 2,2'-biphenol, 0.7 g (29%) of **6** was obtained. (For an alternative route, see below.) Mp: 251-253 °C. ¹H NMR: 5.40-8.83 (*H*(Ar)). ³¹P NMR: -94.8. Anal.

Calcd for $C_{33}H_{22}NO_5P$ (after drying in a vacuum to remove solvent of crystallization): C, 72.93; H, 4.05; N, 2.58. Found: C, 73.14; H, 4.18; N, 2.40.

(f) Preparation of $(NC_{9}H_{6}O)P(O_{2}(3,5-t-bu)_{2}C_{6}H_{2})((O-2,4-(t-bu)_{2}C_{6}H_{2})_{2}CH_{2})$ (7). The procedure was essentially the same as that for 1 using 0.63 mmol of the reactants. Yield: 58%. Mp: 142 °C. ¹H NMR: 0.29 (s, 9H, t-bu-*H*), 1.11 (s, 18H, t-bu-*H*), 1.25 (s, 9H, t-bu-*H*), 1.29 (s, 18H, t-bu-*H*), 3.45 (d, J = 15.0 Hz, 1H, CH_{2} -(A)), 4.55 (dd, $J \approx 3$ Hz, 15.0 Hz, 1H, CH_{2} (B)), 6.15–9.05 (m, 12 H, H(Ar)). ³¹P NMR: -56.9. Anal. Calcd for C₅₂H₆₈NO₅P: C, 76.38; H, 8.32; N, 1.71. Found: C, 76.32; H, 8.25; N, 1.65.

(g) Preparation of (Et₂N)P(OCH₂CMe₂CH₂O)(O₂C₁₄H₈) (8). This compound was prepared by mixing (Et₂N)P(OCH₂CMe₂CH₂O) (2.93 g, 14.26 mmol) and 9,10-phenanthrenequinone (2.97 g, 14.26 mmol) and crystallizing the ensuing solid using CH₂Cl₂-hexane (1:5). Mp: 155 °C. ¹H NMR: 1.02 (s, 3H, CH₃), 1.09 (s, 3H, CH₃), 1.13 (t, ³*J*(H-H) = 6.8 Hz, 6H, CH₂CH₃), 3.25 (m, *J* 13.6, 6.8 Hz, 4H, NCH₂), 3.97 (m, $J \approx 18.4$ Hz. 4H, OCH₂), 7.42-8.76 (m, 8H, *H*(Ar)). ³¹P NMR: -40.6. A second signal for NCH₂ at *ca*. 2.85 ppm slowly developed over a period of time. Anal. Calcd for C₂₃H₂₈O₄NP: C, 66.83; H, 6.78; N, 3.39. Found: C, 66.52; H, 6.50; N, 3.45.

(h) Preparation of (Et₂N)P(2,2'-OC₆H₄C₆H₄O)(OCH₂CMe₂CH₂O) (9). This compound was prepared by treating 15 (2.95 g, 14.38 mmol) with 2,2'-biphenol (2.68 g, 14.38 mmol) and ClN-i-Pr₂ (1.95 g, 14.38 mmol) as in procedure e above. Compound 9 was obtained after evaporating the solvent from the filtrate. Although the ³¹P NMR spectrum showed the material to be essentially pure (>95%), a good solid could not be obtained. ¹H NMR: 0.90–1.40 (many lines, 12H, CH₃), 3.15–3.30 (m, 4H, NCH₂), 3.60–3.80 (m, $J \approx 18.0$ Hz, 4H, OCH₂), 7.10–7.65 (m, 8H, H(Ar)). A second NCH₂ signal (q) was also observed at 2.65 ppm over a period of time. ³¹P NMR: -50.1. Anal. Calcd for C₂₁H₂₈O₄NP: C, 64.78; H, 7.20; N, 3.6. Found: C, 65.32; H, 7.46; N, 2.91.

(i) Reactions of 8. (i) With 8-Hydroxyquinoline: A mixture of 8 (0.43 g, 1.05 mmol) and 8-hydroxyquinoline (0.15 g, 1.05 mmol) was refluxed in dry toluene (10 mL) overnight. After removal of the solvent, 2 could be crystallized from CH_2Cl_2 -hexane (1:1). NMR and melting point data were identical to that given above in b.

(ii) With 2,4,6-Trimethylbenzoic Acid. A mixture of 8 (0.55 g, 1.34 mmol) and 2,4,6-trimethylbenzoic acid (0.22g, 1.34 mmol) was heated in dry *p*-xylene (5 mL) overnight, the solvent removed completely, and the residue crystallized from CH₂Cl₂—hexane (1:2) to give (OCH₂CMe₂CH₂O)P(O)(O-(2,4,6-Me₃-C₆H₂C(O)O)C₁₄H₈) (10). Yield: 0.4 g (59%). Mp: 160 °C. IR: 1742 (ν (C=O), of the ester) [ν (C=O) for the parent carboxylic acid observed at 1686 cm⁻¹], 1607 cm⁻¹ (no OH band observed). ¹H NMR: 0.73 (s, 3H, CH₃), 1.22 (s, 3H, CH₃), 2.40 (s, 3H, CH₃(Ar)), 2.75 (s, 6H, CH₃(Ar)), 3.85 (dd, 2H, CH₂(A)), 4.20 (d, 2H, CH₂(B)), 7.06–8.80 (m, 10H, H(Ar)). ³¹P NMR: -14.4. Anal. Calcd for C₂₉H₂₉O₆P: C, 69.05; H, 5.75. Found: C, 68.45; H, 5.81.

(iii) With Benzoic Acid. The procedure was same as i.ii above. The known compound (OCH₂CMe₂CH₂O)P(O)(O(OH)C₁₄H₈) (**23**)¹⁰ was isolated. Mp: 157–160 °C (lit. mp 162–164 °C¹⁰). ¹H NMR: 1.00 (s, 3H, CH₃), 1.35 (s, 3H, CH₃), 4.05 (dd, 2H, OCH₂), 4.50 (d, 2H, OCH₂), 7.50–8.70 (m, 8H, H(Ar), 9.50 (br, 1H, OH). ³¹P NMR: –10.2 (above data are not reported before).

(j) Reaction of 9 with 8-Hydroxyquinoline. Compound 9 (0.70 g, 1.80 mmol) and 8-hydroxyquinoline (0.23g, 1.62 mmol) were heated to reflux in xylene (5 mL) for 12 h. Solvent was removed and the residue crystallized from ether-heptane (1:1) to afford 5. Yield: 0.2 g (23% based on 8-hydroxyquinoline) (Physical data are given above in e). The ³¹P NMR of the mother liquor after removal of 5 showed a large number of peaks in the tetracoordinated region [10 to -20 ppm].

X-ray Crystallography Experimental Section. Crystal data for **2**, **4**, **6**, and **7** are summarized in Table 1. All data were collected at $-120 \,^{\circ}\text{C}$ on a Stoe-Siemens-AED-diffractometer with monochromated Mo K α radiation ($\lambda = 0.71073 \,\text{ Å}$). The structures were solved by direct methods.¹¹ All nonhydrogen atoms were refined anisotropically with the exception of the Et₂O molecule in structures were refined hydrogen atoms the riding model was used. The structures were refined

against F^2 with a weighting scheme of $w^{-1} = \sigma^2(F_o^2) + (g_1P)^2 + g_2P$ with $P = (F_o^2 + 2F_c^2)/3$. The *R* values are defined as $R1 = \sum ||F_o| - |F_c||/\sum |F_o|$ and $wR_2 = [\sum w(F_o^2 - F_c^2)^2/\sum wF_o^4]^{0.5}$.

In structure 2 the CH_2Cl_2 molecule and in structure 6 the Et_2O are disordered. They are refined with distance restraints and restraints for the displacement parameters. In structure 4 the two independent molecules are related by a pseudoinversion center at -0.123, 0, 0.1685. A transformation to a centrosymmetric space group was not possible. The structure is refined as a racemic twin with a twin parameter of 0.52(8).13 In structure 7 one tert-butyl group in each of the two independent molecules is disordered. The anisotropic displacement parameters of the carbon atoms lying opposite to each other are fixed to the same values. Also, distance restraints were used. Additionally the quinoline ring in one molecule is disordered and refined with distance restraints and restraints for the anisotropic displacement parameters. There is still some high residual density in the neighborhood of this quinoline ring that might be explained as a further disorder. At the end of the data collection there were some problems with icing leading to the high value of R_{int} .

Results and Discussion

Syntheses. The oxinate compounds 1-4 and 7 as well as the (diethylamino)phosphorane 8 were prepared by the oxidative addition of a quinone to the cyclic phosphite in isolated yields of 40-60%. A typical synthesis is illustrated in eq 2 for the

formation of **4**. For introducing a six or a higher membered ring on cyclic phosphites the route in eq 2 is not feasible. Therefore, for synthesizing the tricyclic derivative **5** we employed the reaction of the cyclic phosphite **12** with 2,2'biphenol in the presence of *N*-chlorodiisopropylamine in ether at -60 °C. By careful fractional crystallization of the precipitate from a dichloromethane-heptane mixture we could isolate **5** in yields of about 50%. However the crystalline solid **6** which came out from the ether filtrate as the etherate in 6-7% yield *was a surprise*. This compound containing two 2,2'-biphenoxy units *must* arise from the exchange of the six-membered *phosphorinane* ring by the seven-membered *phosphepin* ring; the yield of **6**·Et₂O could be significantly enhanced (to 30%) by using a 1:2 molar ratio of cyclic phosphite to 2,2'-biphenol. These reactions are illustrated in eq 3.

The above exchange leading to 6 is unique because when either 2,6-dimethyl phenoxy or 2,4,6-trimethyl phenoxy or diethylamino group was used in place of oxinate, no such phenomenon was observed (eq 4).

What is perhaps more puzzling is the reaction of **9** with 8-hydroxyquinoline to yield **6** (eq 5). It can be noted that *even* though no 2,2'-biphenol has been added, the reorganization still takes place. To our knowledge, such a reaction in phosphorane chemistry is unknown to date.

⁽¹⁰⁾ Gallucci, J. C.; Holmes, R. R. Inorg. Chem. 1980, 19, 3540.

⁽¹¹⁾ Sheldrick, G. M. SHELXS-90. Acta Crystallogr. 1990, A46, 467.

⁽¹²⁾ Sheldrick, G. M. SHELXL-93, University of Göttingen, 1993.

^{(13) (}a) Flack, H. D. Acta Crytallogr. **1983**, A39, 876. (b) Pratt, C. S.; Coyle, B. A.; Ibers, J. A. J. Chem. Soc. **1971**, 2146.

 $+ HNEt_2 + (0 \text{ ther products}) \quad (5)$

By contrast, the aminophosphorane 8 upon treatment with 8-hydroxyquinoline afforded the ring-preserved compound 2, which could be readily isolated (eq 6).

It is difficult to ascertain the reason for the exchange of the six-membered phosphorinane ring by the seven-membered phosphepin ring, thereby leading to the preferential formation of the (7 + 7 + 5) ring compound **6**. Two factors which may be responsible for this are (i) the aromatic residues on the seven-membered 1,3,2-phosphepin rings increase the acidity on phosphorus and hence its ability to form to stronger N \rightarrow P bond

We also tried to obtain hexacoordinated phosphoranes with chelating carboxylates of type **IX** in place of oxinate. However, strangely, treatment of **8** with 2,4,6-trimethylbenzoic acid (eq 7) gave the ester **10**, which is a crytalline solid showing a ³¹P NMR chemical shift of -14.4 ppm; the IR spectrum of this compound showed an ester band at 1742 cm⁻¹ (It can be seen that **10** is actually a rearranged product of **IX**). When benzoic acid was used instead of 2,4,6-trimethylbenzoic acid, the only product that we could isolate was the known compound **23**.¹⁰

Although this hydrolysis product is essentially similar to the ester 10 (eq 7), transfer of an entire acid residue as observed for the latter, to our knowledge, is unprecedented.

 31 **P NMR Spectroscopy.** The 31 **P NMR** shift values for 1–7 along with those for other selected compounds are shown in Table 2. An examination of Table 2 reveals the following features.

(a) The 31 P NMR chemical shifts for 2, 4, 6, and 7 show that the hexacoordinated structures observed for 2, 4, and 6 and the pentacoordinated structure observed for 7 in the solid state, as shown by X-ray, are retained in solution.

(b) The hexacoordinated derivatives experience an upfield shift of 48–60 ppm when compared to their close pentacoordinated analogues [e.g. entries 6 and 18, $\Delta \delta = 49.7$ ppm].

(c) Among the oxinate hexacoordinated compounds investigated, the deshielding effect of ring size is in the order five > seven > six \approx four > eight. A comparable effect is discernible in anionic hexacoordinated phosphates (**XII**-**XIV**) also.^{19,20} A

similar trend has been noted by Holmes and co-workers in pentaoxyphosphoranes.²¹

The trends observed in the oxinate system suggest that phosphorus experiences more deshielding in compounds with *odd*-membered rings as compared to those with *even*-membered

- (14) Sarma, R.; Ramirez, F.; Mckeever, B.; Marecek, J. F.; Lee, S. J. Am. Chem. Soc. **1976**, *98*, 581.
- (15) Kumara Swamy, K. C.; Day, R. O.; Holmes, J. M.; Holmes, R. R. J. Am. Chem. Soc. **1990**, 112, 6095.
 - (16) Said, M. A.; Kumara Swamy, K. C., Unpublished data.
- (17) Prakasha, T. K.; Burton, S. D.; Day, R. O.; Holmes, R. R. Inorg. Chem. 1992, 31, 5494.
- (18) Prakasha, T. K.; Chandrasekaran, A.; Day, R. O.; Holmes, R. R. Inorg. Chem. 1995, 34, 1243 and the references cited therein.
- (19) Koenig, M.; Klaebe, A.; Munoz, A.; Wolf, R. J. Chem. Soc., Perkin Trans. 2 1979, 40.
- (20) Hellwinkel, D.; Lindner, W.; Wilfinger, H. J. Chem. Ber. 1974, 107, 1428.

(21) Holmes, R. R.; Prakasha, T. K.; Pastor, S. D. in *Phosphorus-31 NMR Spectral Properties in Compound Characterization and Structural Analysis*; Quin, L. D., Verkade, J. G., Eds; VCH: New York, 1994; Chapter 3. rings. It may be worthwhile to examine a few more examples containing seven-membered (those more flexible than the 2,2'-biphenoxy system) and nine-membered rings to understand these effects more clearly.

(d) When saturated 1,3,2-dioxaphosphorinane (entry no. 16) or phospholane (entry no. 13) rings are present, the nitrogen of the oxinate refuses to form a coordinate bond, thus leaving the phosphorus pentacoordinated. It is likely that in these cases phosphorus does not become sufficiently acidic to accept the lone pair of electrons from the oxinate nitrogen.

The presence of N \rightarrow P coordination in the eight-membered ring compounds containing the 2,2'-methylene bis(4-chlorophenoxy) group (entries 9 and 11) and its absence in those containing the 2,2'-methylene bis(4,6-di(t-butyl)phenoxy) group (entries 14 and 15) is noteworthy; steric factors may be partly responsible for the absence of N \rightarrow P coordination in the latter case. The ³¹P NMR chemical shift values for these compounds (entries 14 and 15) are comparable to those in which there is no possibility of internal coordination (entries 22 and 23).

Structural Aspects

The molecular geometry along with atom labeling scheme for **2**, **4**, **6**, and **7** is shown in Figures 1–4, respectively. Selected bond lengths and bond angles are given in Tables 3–6. Other details including atomic coordinates and a full list of bond lengths and bond angles are provided as supporting information.

In compounds 2, 4, and 6, the phosphorus atoms are octahedrally coordinated by cyclic ligands; the coordinating nitrogen is *trans* to an oxygen of the six-membered ring in 2 and of the seven-membered ring in 4. The three structures are quite similar in terms of the geometry at the central phosphorus atom. The endocyclic O-P-N angles lie between 84.0° and 85.9°. The greatest deviation from 90° are exhibited by the six-membered ring system in 2 [99.90(8)°]; this is possibly due to ring strain. The strain in the seven-membered rings is less; therefore, the O-P-O angles are closer to 90° [92.79(8)° for 6 and 95.9(2)° and 95.5(2)° for 4]. Such a feature is also discernible in the closely analogous pentacoordinated structures XV^{1h} and XVI^{17} in which the O-P-O angle for the six-

COCH2CF3

Table 2. ³¹P NMR Data for Selected Penta- and Hexacoordinated Compounds with Oxinate/Aryloxy/Alkoxy Groups

no.	ring 1^a	ring 2^a	$\delta(^{31}\text{P})$, ppm	ring system assignment (compd no.) ^b	method of preparation ^c	ref
				Structure X		
1	А	(OPh) ₂	-123.0	0 + 4 + 5	i	3d
2	А	В	-102.0	5 + 4 + 5	i	3d
3	В	С	-88.3	5 + 5 + 5	i	this
			(-88)	(1)		work; 3c
4	В	В	-89.5^{d}	5 + 5 + 5	ii	this
				(17)		work
5	D	В	-102.3	6 + 5 + 5	ii ^e	this
				(18)		work
6	D	С	-101.0	6 + 5 + 5	i	this
				(3)		work
7	D	E	-100.8	6 + 5 + 5	i	this
	_	~		(2)		work
8	F	C	-89.3	7 + 5 + 5	i	this
	~	_		(4)		work
9	G	В	-106.7	8+5+5	ii	this
	_	_		(19)		work
10	D	F	-107.5	7 + 6 + 5	11	this
		~	105.1	(5)		work
11	D	G	-127.1	8 + 6 + 5	11	this
	-	-	0.1.0	(20)		work
12	F	F	-94.8	7 + 7 + 5	11	this
				(6)		WORK
				Structure XI		
13	D	Н	-57.5	6 + 5 + 0	ii	this
	(R = O)	$C_9H_6N)^f$		(21)		work
14	С	Ι	-56.9	8 + 5 + 0	i	this
	$(\mathbf{R} = \mathbf{O})$	C_9H_5N)		(7)		work
15	E	Ι	-56.1	8 + 5 + 0	i	this
	$(\mathbf{R} = \mathbf{O})$	C_9H_6N		(22)		work
16	D	D	-67.0	6 + 6 + 0	ii	7
	(R = O)	C_9H_6N				
17	В	В	-30.2	5 + 5 + 0	g	14
	(R =	OPh)				
18	С	D	-51.3	6 + 5 + 0	i	15
	(R = 2, 6-N)	$Me_2C_6H_2O)$				
19	D	D	$-68.8, -66.9^{n}$	6 + 6 + 0	ii	16
• •	(R = 2, 6-N)	$Me_2C_6H_2O)$				
20	D	F	-60.0	7 + 6 + 0	ii	4
• ·	(R = 2, 6-N)	$Me_2C_6H_2O)$. –
21	F	F	-47.3	7 + 7 + 0	11	17
	(R = CI)	$F_3CH_2O)$				10
22	С	I	-54.5	8 + 5 + 0	1	18
22	(R = 2, 6-N)	$Me_2C_6H_2O)$	(0.0)			10
23	D	J	-69.0	8 + 6 + 0	11	18
	(R = 2, 6-N)	$VIe_2C_6H_2O$)				

^{*a*} Ring types are pictured below the structures of **X** and **XI**. ^{*b*} Compounds **17–22** identified mainly by ³¹P NMR spectroscopy. ^{*c*} Method i: Oxidative addition of ozone/quinone to the phosphite. Method ii: Oxidative addition of diol to phosphite in the presence of *N*-chlorodiisopropylamine. ^{*d*} Another peak observed at -84.8 ppm ascribed to a $[P(O_2C_6H_4)_3]^-$ anion.^{19 *e*} The reaction was conducted two ways either by starting with (NC₉H₆O)P(OCH₂CM₂CH₂O) or (NC₉H₆O)P(O₂C₆H₄). ^{*f*} NC₉H₆O = quinolin-8-yloxy. ^{*g*} Different route by starting with PCl₅. ^{*h*} Two peaks observed; possibly two different conformers.

Figure 1. An ORTEP picture of 2; only the phosphorus atom and those connected to it are labeled. The disordered CH_2Cl_2 molecule of crystallization and all hydrogen atoms have been omitted.

Figure 2. An ORTEP picture of one of the two independent molecules of 4; only the phosphorus atom and those connected to it are labeled. The CH_2Cl_2 molecule of crystallization and all hydrogen atoms have been omitted.

membered ring $[97.4(1)^{\circ}]$ is larger than that observed for the seven-membered ring $[94.4(2)^{\circ}]$ and $93.3(2)^{\circ}]$.

The P–O bond lengths differ depending on the ring size. In the five-membered rings the mean P–O distance is 1.709 Å, whereas it is 1.655 Å in the larger rings. The mean P–O bond distances in the 1,3,2-dioxaphosphorinane (1.632 Å) or in the phosphepin (1.660 Å) ring are greater, *albeit marginally*, than those observed in the analogous pentacoordinated structures **XV** (mean 1.613 Å) or **XVI** (mean 1.632 Å) as expected. The P–N distances in **2**, **4**, and **6** are in the range 1.938–1.963 Å; these values are *ca*. 0.2 Å longer than the calculated value for a P–N single bond using a modified Schomaker–Stevenson equation.²²

The five-membered rings are nearly planar in all three structures. The seven-membered ring in **4** and **6** shows a conformation in between a twist-boat and a boat²³ and is analogous to that in the structures reported by Holmes and co-

Figure 3. An ORTEP picture of 6; only the phosphorus atom and those connected to it are labeled. The disordered Et₂O of solvation and all hydrogen atoms have been omitted.

Figure 4. An ORTEP picture of 7 showing the independent molecule in which the oxinate is ordered. Only one set of atoms for the disordered *tert*-butyl group is shown. All hydrogen atoms are omitted and only phosphorus, nitrogen, and those connected to phosphorus are labeled.

Bond Lengths				
P(1) - O(5)	1.623 (2)	P(1) - O(4)	1.640 (2)	
P(1) - O(3)	1.705 (2)	P(1) = O(1)	1.709 (2)	
P(1) - O(2)	1.741 (2)	P(1) - N(1)	1.956 (2)	
Bond Angles				
O(5) - P(1) - O(4)	99.90 (8)	O(5) - P(1) - O(1)	89.53 (8)	
O(4) - P(1) - O(3)	90.06 (8)	O(3) - P(1) - O(1)	173.23 (8)	
O(4) - P(1) - O(1)	91.18 (8)	O(4) - P(1) - O(2)	169.12 (8)	
O(5) - P(1) - O(2)	90.85 (8)	O(1) - P(1) - O(2)	87.21 (8)	
O(3) - P(1) - O(2)	90.32 (7)	O(4) - P(1) - N(1)	85.11 (8)	
O(5) - P(1) - N(1)	172.58 (8)	O(1) - P(1) - N(1)	84.87 (7)	
O(3) - P(1) - N(1)	88.61 (7)	C(exo) = N(1) = P(1)	130.4 (2)	
O(2) - P(1) - N(1)	84.03 (7)	C(endo) - N(1) - P(1)	110.11 (19)	
O(5) - P(1) - O(3)	96.82 (8)			

workers.^{1e,f,15,17} The six-membered ring in **2** has a slightly distorted chair conformation (85% chair²⁴). By contrast, it can be noted that this ring exhibited mostly a boat/twist-boat conformation in pentaoxyphosphoranes.^{1,8} As the only example

⁽²²⁾ Blom, R.; Haaland, A. J. Mol. Strukt. 1985, 128, 21.
(23) Boessenkool, I. K.; Boeyens, J. C. A. J. Cryst. Mol. Struct. 1980, 10, 11.

⁽²⁴⁾ Gould, R. O.; Taylor, P. PUCKER Program for the calculation of ring conformations, University of Edinburgh, 1994.

Table 4. Selected Bond Lengths (Å) and Angles (deg) for 4

Bond Lengths				
P(1)-O(3)	1.652 (4)	P(1) - O(2)	1.655 (3)	
P(1) - O(5)	1.692 (3)	P(1) - O(4)	1.696 (3)	
P(1) - O(1)	1.710 (4)	P(1) - N(1)	1.959 (4)	
	Bond	l Angles		
O(3) - P(1) - O(2)	95.9 (2)	O(3) - P(1) - O(4)	91.5 (2)	
O(2) - P(1) - O(5)	87.8 (2)	O(5) - P(1) - O(4)	91.6 (2)	
O(2) - P(1) - O(4)	172.6 (2)	O(2) - P(1) - O(1)	93.6 (2)	
O(3) - P(1) - O(1)	88.8 (2)	O(4) - P(1) - O(1)	86.2 (2)	
O(5) - P(1) - O(1)	173.6 (2)	O(2) - P(1) - N(1)	85.8 (2)	
O(3) - P(1) - N(1)	174.5 (2)	O(4) - P(1) - N(1)	86.8 (2)	
O(5) - P(1) - N(1)	88.0 (2)	O(8) - P(2) - O(7)	95.5 (2)	
O(1) - P(1) - N(1)	85.9 (2)	C(exo) - N(1) - P(1)	132.2 (4)	
O(3) - P(1) - O(5)	97.3 (2)	C(endo) = N(1) = P(1)	109.3 (3)	
Table 5. Selected Bond Lengths (Å) and Angles (deg) for 6				
Bond Lengths				
	Bond	Lengths		
P(1)-O(3)	Bond 1.637 (2)	Lengths P(1)-O(4)	1.662 (2)	
P(1)-O(3) P(1)-O(2)	Bond 1.637 (2) 1.673 (2)	Lengths P(1)-O(4) P(1)-O(5)	1.662 (2) 1.681 (2)	
P(1)-O(3) P(1)-O(2) P(1)-O(1)	Bond 1.637 (2) 1.673 (2) 1.725 (2)	Lengths P(1)-O(4) P(1)-O(5) P(1)-N(1)	1.662 (2) 1.681 (2) 1.938 (2)	
P(1)-O(3) P(1)-O(2) P(1)-O(1)	Bond 1.637 (2) 1.673 (2) 1.725 (2) Bond	Lengths P(1)-O(4) P(1)-O(5) P(1)-N(1) d Angles	1.662 (2) 1.681 (2) 1.938 (2)	
P(1)-O(3)P(1)-O(2)P(1)-O(1)O(3)-P(1)-O(4)	Bond 1.637 (2) 1.673 (2) 1.725 (2) Bond 96.41 (9)	Lengths P(1)-O(4) P(1)-O(5) P(1)-N(1) d Angles O(3)-P(1)-O(5)	1.662 (2) 1.681 (2) 1.938 (2) 90.15 (9)	
$\begin{array}{c} \hline P(1)-O(3) \\ P(1)-O(2) \\ P(1)-O(1) \\ \hline O(3)-P(1)-O(4) \\ O(4)-P(1)-O(2) \end{array}$	Bond 1.637 (2) 1.673 (2) 1.725 (2) Bond 96.41 (9) 91.14 (8)	Lengths P(1)-O(4) P(1)-O(5) P(1)-N(1) d Angles O(3)-P(1)-O(5) O(2)-P(1)-O(5)	1.662 (2) 1.681 (2) 1.938 (2) 90.15 (9) 172.61 (10)	
$\begin{array}{c} \hline P(1)-O(3) \\ P(1)-O(2) \\ P(1)-O(1) \\ \hline O(3)-P(1)-O(4) \\ O(4)-P(1)-O(2) \\ O(4)-P(1)-O(5) \\ \hline \end{array}$	Bond 1.637 (2) 1.673 (2) 1.725 (2) Bond 96.41 (9) 91.14 (8) 92.79 (9)		1.662 (2) 1.681 (2) 1.938 (2) 90.15 (9) 172.61 (10) 171.78 (10)	
$\begin{array}{c} \hline P(1)-O(3) \\ P(1)-O(2) \\ P(1)-O(1) \\ \hline O(3)-P(1)-O(4) \\ O(4)-P(1)-O(2) \\ O(4)-P(1)-O(5) \\ O(3)-P(1)-O(1) \\ \hline \end{array}$	Bond 1.637 (2) 1.673 (2) 1.725 (2) Bond 96.41 (9) 91.14 (8) 92.79 (9) 91.79 (9)	Lengths P(1)-O(4) P(1)-O(5) P(1)-N(1) d Angles O(3)-P(1)-O(5) O(2)-P(1)-O(5) O(4)-P(1)-O(1) O(5)-P(1)-O(1)	1.662 (2) 1.681 (2) 1.938 (2) 90.15 (9) 172.61 (10) 171.78 (10) 87.67 (9)	
$\begin{array}{c} \hline P(1)-O(3) \\ P(1)-O(2) \\ P(1)-O(1) \\ \hline O(3)-P(1)-O(4) \\ O(4)-P(1)-O(2) \\ O(4)-P(1)-O(5) \\ O(3)-P(1)-O(1) \\ O(2)-P(1)-O(1) \\ \hline \end{array}$	Bond 1.637 (2) 1.673 (2) 1.725 (2) Bond 96.41 (9) 91.14 (8) 92.79 (9) 91.79 (9) 87.54 (9)		1.662 (2) 1.681 (2) 1.938 (2) 90.15 (9) 172.61 (10) 171.78 (10) 87.67 (9) 86.04 (9)	
$\begin{array}{c} \hline P(1)-O(3) \\ P(1)-O(2) \\ P(1)-O(1) \\ \hline O(3)-P(1)-O(4) \\ O(4)-P(1)-O(2) \\ O(4)-P(1)-O(5) \\ O(3)-P(1)-O(1) \\ O(2)-P(1)-O(1) \\ O(3)-P(1)-N(1) \\ \hline \end{array}$	Bond 1.637 (2) 1.673 (2) 1.725 (2) Bond 96.41 (9) 91.14 (8) 92.79 (9) 91.79 (9) 87.54 (9) 177.39 (9)		1.662 (2) 1.681 (2) 1.938 (2) 90.15 (9) 172.61 (10) 171.78 (10) 87.67 (9) 86.04 (9) 90.61 (9)	
$\begin{array}{c} P(1)-O(3)\\ P(1)-O(2)\\ P(1)-O(1)\\ \hline \\ O(3)-P(1)-O(4)\\ O(4)-P(1)-O(2)\\ O(4)-P(1)-O(5)\\ O(3)-P(1)-O(1)\\ O(2)-P(1)-O(1)\\ O(3)-P(1)-N(1)\\ O(2)-P(1)-N(1)\\ \end{array}$	Bond 1.637 (2) 1.673 (2) 1.725 (2) Bond 96.41 (9) 91.14 (8) 92.79 (9) 91.79 (9) 87.54 (9) 177.39 (9) 83.41 (9)		1.662 (2) 1.681 (2) 1.938 (2) 90.15 (9) 172.61 (10) 171.78 (10) 87.67 (9) 86.04 (9) 90.61 (9) 130.4 (2)	
$\begin{array}{c} P(1)-O(3)\\ P(1)-O(2)\\ P(1)-O(1)\\ \hline \\ O(3)-P(1)-O(4)\\ O(4)-P(1)-O(2)\\ O(4)-P(1)-O(2)\\ O(3)-P(1)-O(1)\\ O(2)-P(1)-O(1)\\ O(3)-P(1)-N(1)\\ O(2)-P(1)-N(1)\\ O(1)-P(1)-N(1)\\ \end{array}$	Bond 1.637 (2) 1.673 (2) 1.725 (2) Bond 96.41 (9) 91.79 (9) 91.79 (9) 87.54 (9) 177.39 (9) 83.41 (9) 85.75 (9)		1.662 (2) 1.681 (2) 1.938 (2) 90.15 (9) 172.61 (10) 171.78 (10) 87.67 (9) 86.04 (9) 90.61 (9) 130.4 (2) 110.0 (2)	

of a hexacoordinated phosphorane with a saturated ring, 2 is useful for comparing the variation in geometric parameters at phosphorus in compounds with varying coordination numbers ranging from 3 to 6.

There are weak interactions between the solvent and the molecule in structures **2** (O5 is close to a H atom of CH₂Cl₂ at 2.347 Å) and **4** (O3 and O8 are close to H atoms of different CH₂Cl₂ molecules at 2.359 and 2.372 Å, respectively); the oxygen *trans* to the oxinate nitrogen is the one involved in these interactions.

In structure **7** the phosphorus atom has a trigonal bipyramidal geometry. The nonchelating quinoline-8-yloxy substituent is in the axial position, while the 3,5-di-*tert*-butyl-o-quinondiyl substituent is axial—equatorial. The 1,3,2-dioxaphosphocin ring spans a diequatorial position. Four of the five P–O bonds are shorter than single bonds (mean 1.617 Å) while the P2–O10 distance is much longer [1.708(3) Å)].

The P–N distance is 3.853(4) Å for the shown molecule and 3.736(6) and 4.154(7) Å for the disordered second one. A comparison with the sum of van der Waals radii $(3.44 \text{ Å})^{25}$ shows that there is no interaction between phosphorus and nitrogen. The absence of N–P coordination in **7** is most probably a result of steric factors (see ³¹P NMR section also).

The equatorial angles lie between $117.15(13)^{\circ}$ (O8–P2–O7) and $123.55(14)^{\circ}$ (O7–P2–O9). The O6–P2–O10 (O_{ax}–P–O_{ax}) angle has a value of $173.88(13)^{\circ}$ and lies in the range

Table 6. Selected Bond Lengths (Å) and Angles (deg) for 7

Bond Lengths					
P(1) - O(3)	1.590(3)	P(1) - O(2)	1.603 (2)		
P(1) - O(4)	1.625 (2)	P(1) - O(1)	1.647 (2)		
P(1) - O(5)	1.713 (2)	P(2)-O(8)	1.595 (3)		
P(2) - O(7)	1.600(3)	P(2)-O(9)	1.630 (2)		
P(2) = O(6)	1.647 (3)	P(2)-O(10)	1.708 (3)		
Bond Angles					
O(3) - P(1) - O(2)	118.50 (13)	O(3) - P(1) - O(4)	123.43 (13)		
O(2) - P(1) - O(4)	117.88 (13)	O(3) - P(1) - O(1)	85.35 (13)		
O(2) - P(1) - O(1)	91.39 (13)	O(4) - P(1) - O(1)	89.08 (12)		
O(3) - P(1) - O(5)	91.51 (12)	O(2) - P(1) - O(5)	93.03 (12)		
O(4) - P(1) - O(5)	89.88 (12)	O(1) - P(1) - O(5)	175.43 (13)		
O(8) - P(2) - O(7)	117.15 (13)	O(8)-P(2)-O(9)	119.07 (14)		
O(7) - P(2) - O(9)	123.55 (14)	O(8)-P(2)-O(6)	91.06 (14)		
O(7) - P(2) - O(6)	90.45 (13)	O(9) - P(2) - O(6)	83.87 (13)		
O(8) - P(2) - O(10)	92.55 (13)	O(7) - P(2) - O(10)	92.30 (13)		
O(9)-P(2)-O(10)	90.05 (13)	O(6)-P(2)-O(10)	173.88 (13)		

observed for analogous phosphoranes.¹⁸ The axial-equatorial angles lie between 83.87(13) (O9-P2-O6) and $92.55(13)^{\circ}$ (O8-P2-O10). The eight-membered ring has a boat-chair conformation quite similar to some known structures.^{5,6,18}

Summary and Outlook. The presence or absence of $N \rightarrow P$ coordination in the new phosphoranes with an oxinate group is determined by the nature of the other substituents present, as revealed by X-ray crystallography and (solution state) ³¹P NMR spectroscopy. The 1,3,2-dioxaphosphorinane ring conformation, which is normally boat in non-hydrogen-bonded phosphoranes.^{1h,15} becomes *chair* when $N \rightarrow P$ coordination is present, as in our phosphorane 2. Furthermore, although no isomerism has been identified so far in the above hexacoordinated systems (Table 1), there is every possibility of obtaining isomers. Amino group replacement reactions on phosphoranes such as those shown by eqs 5-7 may be used to generate new reaction chemistry; for example, the reaction of 8 with o-aminothiophenol leads to a crystalline product $[\delta(^{31}P) = -78.9 \text{ ppm}]$ in which the phosphorinane ring appears to have opened and a diethylamino group has been retained (¹H NMR). Characterization of this product is in progress.

Acknowledgment. Financial support by the Council of Scientific and Industrial Research (New Delhi, India) is gratefully acknowledged. Thanks are also due to UGC, India (COSIST and Special Assistance Programme), for instrumental facilities. We are thankful to Prof. Dr. G. M. Sheldrick for his interest in this work.

Supporting Information Available: Structural diagrams with complete labeling; tables providing X-ray data collection and solution parameters; complete listing of atomic coordinates, bond lengths, and angles; anisotropic displacement parameters; H-atom coordinates and isotropic displacement parameters for structures **2**, **4**, **6**, and **7**, and NMR data pertaining to the identification of compounds **17–22** (43 pages). See any current masthead page for ordering and Internet access instructions.

JA960554V

⁽²⁵⁾ Emsley, J. Die Elemente; W. de Gruyter: Berlin, 1994.